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Abstract
Shotgun metagenomics sequencing is a powerful tool for the characterization
of complex biological matrices, enabling analysis of prokaryotic and eukaryotic
organisms in a single experiment, with the possibility of   reconstructionde novo
of the whole metagenome or a set of genes of interest. One of the main factors
limiting the use of shotgun metagenomics on wide scale projects is the high
cost associated with the approach. However, we demonstrate that—for some
applications—it is possible to use shallow shotgun metagenomics to
characterize complex biological matrices while reducing costs. Here we
compared the results obtained on full size, real datasets with results obtained
by randomly extracting a fixed number of reads. The main statistics that were
compared are alpha diversity estimates, species abundance, and ability of
reconstructing the metagenome in terms of length and completeness. Our
results show that a classification of the communities present in a complex
matrix can be accurately performed even using very low number of reads. With
samples of 100,000 reads, the alpha diversity estimates were in most cases
comparable to those obtained with the full sample, and the estimation of the
abundance of all the present species was in excellent agreement with those
obtained with the full sample. On the contrary, any task involving the
reconstruction of the metagenome performed poorly, even with the largest
simulated subsample (1M reads). The length of the reconstructed assembly
was sensibly smaller than the length obtained with the full dataset, and the
proportion of conserved genes that were identified in the meta-genome was
drastically reduced compared to the full sample. Shallow shotgun
metagenomics can be a useful tool to describe the structure of complex
matrices, but it is not adequate to reconstruct  —even partially—thede novo
metagenome.
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Introduction
Shotgun metagenomics offers the possibility to assess the  
complete taxonomic composition of biological matrices and 
to estimate the relative abundances of each species in an unbi-
ased way1,2. It allows for agnostic characterization of complex  
communities containing eukaryotes, fungi, bacteria and also 
viruses, using both DNA and RNA as a starting material. In  
addition, the whole metagenome approach can be used not only 
to simply identify DNA and RNA virus in a complex matrix, 
but also to study the genetic diversity in virus populations3–5,  
and to identify potential adventitious agents in biopharmaceutical 
manufacturing6,7.

Metagenome shotgun high-throughput sequencing has pro-
gressively gained popularity in parallel with the advancing of  
next-generation sequencing technologies8,9, which provide more 
data in less time at a lower cost than previous sequencing tech-
niques. This allows the extensive application to study the most 
various biological mixtures such as environmental samples10,11, 
gut samples12–14, skin samples15, clinical samples for diagnostics  
and surveillance purposes16–19, food ecosystems20,21 and drugs  
manufactured using biological sources as vaccines22.

The aim of whole metagenome approaches is not only to study  
the taxonomic composition of biological substrates but also 
to identify which genes and metabolic pathways are present 
with the aim to understand functional capacities in the studied  
microbiota13,23. Recently the approach has been also used to 
analyze the ensemble of genes that may encode antibiotic  
resistance in various microbial ecosystems (i.e. soil), which are 
defined as the resistome24.

Another, more traditional approach currently used to assign tax-
onomy to DNA sequences is based on the sequencing of target 
conserved regions. Metabarcoding method relies on conserved 
sequences to characterize communities of complex matrices. 
These include the highly variable region of 16S rRNA gene 
in bacteria27, the nuclear ribosomal internal transcribed spacer 
(ITS) region for fungi28, 18S rRNA gene in eukaryotes29, cyto-
chrome c oxidase sub-unit I (COI or cox1) for taxonomical  
identification of animals30, rbcL, matK and ITS2 as the plant 
barcode31. Considering the large amount of genetic diversity 
within and between virus families, a universal metabarcoding 
approach is not applicable to detect virus nucleic acids in complex  
biological samples.

The selection of conserved regions has the advantage of reduc-
ing sequencing needs, since it does not require sequencing of 
the full genome, just a small region. On the other hand, given 
the currently used approaches, characterization of microbial and 
eukaryotic communities requires different primers and library 
preparations32. In addition, several studies suggested that whole 
shotgun metagenome sequencing is more effective in the charac-
terization of metagenomics samples compared to target amplicon  
approaches, with the additional capability of providing functional 
information regarding the studied sample33.

Current whole shotgun metagenome experiments are performed 
obtaining several million reads10,13. However, obtaining a broad 

characterization of the relative abundance of different species, 
might easily be achieved with lower number of reads.

To test this hypothesis, we performed sequencing using whole 
metagenomics approach of seven samples derived from differ-
ent complex matrices to characterize their composition, and 
subsequently tested the accuracy of several measures when  
downsampling the number of reads used for analysis including 
the performance of de novo assembly in the ability to reconstruct  
both entire genomes and genes.

Methods
Samples description and DNA extraction
The following samples were used in the present work: two  
samples collected from a live attenuated virus vaccine (B1 and 
B2), two horse fecal samples (F1 and F2), and three food samples  
(M1, M2, and M3).

Biological medicines were two different lots of live attenuated 
MPRV vaccine (Prorix Tetra, Glaxo SmithKline) widely used for 
immunisation against measles, mumps, rubella and chickenpox 
in infants. Lyophilised vaccines were resuspended in 500 μl  
sterile water for injection and DNA extracted using Maxwell® 
16 Instrument and the Maxwell® 16 Tissue DNA Purification Kit 
(Promega, Madison, WI, USA) according to the manufacturer’s  
instructions.

Horse feces from two individuals were collected as follows: 
100 mg of starting material stored in 70% ethanol were  
processed for DNA extraction using the QIAamp PowerFecal 
DNA Kit (QIAGEN GmbH, Hilden, Germany), according to the  
manufacturer’s instructions.

Food samples were raw materials of animal and plant origin, 
used to industrially prepare bouillon cubes. DNA extractions 
from those three samples were performed starting from 2 grams 
of material each, using the DNeasy mericon Food Kit (QIAGEN 
GmbH, Hilden, Germany), according to the manufacturer’s  
instructions.

DNA purity and concentration were estimated using a NanoDrop 
Spectrophotometer (NanoDrop Technologies Inc., Wilmington, 
DE, USA) and Qubit 2.0 fluorometer (Invitrogen, Carlsbad,  
CA, USA).

Whole metagenome DNA library construction and 
sequencing
DNA library preparations were performed according to manu-
facturer’s protocol, using the kit Ovation® Ultralow System 
V4 1–96 (Nugen, San Carlos, CA). Library prep monitoring 
and validation were performed both by Qubit 2.0 fluorometer  
(Invitrogen, Carlsbad, CA, USA) and Agilent 2100 Bioanalyzer 
DNA High Sensitivity Analysis kit (Agilent Technologies, Santa 
Clara, CA).

Cluster generation, template hybridization, isothermal amplifica-
tion, linearization, blocking and denaturization and hybridiza-
tion of the sequencing primers was then performed on Illumina 
cBot and flowcell HiSeq SBS V4 250 cycle kit, loaded on  
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HiSeq2500 Illumina sequencer producing 125bp paired-end reads 
(for samples B1, B2, M1, M2 and M3) and 250bp paired-end  
reads (for samples F1 and F2).

The CASAVA Illumina Pipeline version 1.8.2 was used for  
base-calling and de-multiplexing. Adapters were masked using 
cutadapt34. Masked and low quality bases were filtered using  
erne-filter version 1.4.635.

Bioinformatics analysis
The bioinformatics analysis performed in the present work are  
summarized in Figure 1.

Different read lengths among samples may constitute an addi-
tional confounder in analysis. To obtain homogeneous read length 
across samples, reads sequenced belonging to F1 and F2 were 
trimmed to a length of 125 bp using fastx-toolkit version 0.0.13  
before subsequent analysis.

Reduction in coverage was simulated by randomly sampling 
a fixed number of reads from the full set of reads. Subsamples 
of 10,000, 25,000, 50,000, 100,000, 250,000, 500,000 and 
1,000,000 reads were extracted from the raw reads using seqtk  
version 1.3. To assess variability, subsampling was performed  
5 times for each sample and forr each read abundance.

Classification of reads against the NCBI nt database down-
loaded on May 2018 was performed using Kraken 2 version 
2.0.6-beta36 to estimate species abundance and Shannon diversity 

index. A simplified representation of species composition was  
obtained using Krona version 2.637.

Chao138 species richness and Shannon’s diversity39 were estimated 
using the R package vegan version 2.4.240.

Assembly of the metagenome was performed using megahit  
version 1.1.241. Completeness of the assembly was assessed 
using BUSCO version 3.0.242. The proportion of the recon-
structed genes was measured as the proportion of genes that 
were fully reconstructed, plus the proportion of genes that 
were partially reconstructed. BUSCO analysis was performed  
on prokaryotic database for all the samples with the exception 
of M1 (mostly composed by fungi) for which the fungal data-
base was used. Samples B1 and B2 were also compared against 
the eukaryotic BUSCO database; results for the prokaryotic  
database are reported.

Unless otherwise specified, all the analysis were performed using 
R 3.3.343.

Results
Sample composition and downsampling
Summary statistics for the full samples included in the study are 
shown in Table 1.

The number of reads obtained in the samples selected for 
the present study ranged from slightly more than 1 million  

Figure 1. Workflow of the main bioinformatics analysis performed in the present work.
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Table 1. Summary statistics for the full 
samples included in the study.

Sample N reads N species Singletons

B1 11,031,061 2508 1299

B2 3,830,083 4598 1795

F1 12,472,553 29661 14750

F2 10,780,450 25608 12374

M1 1,898,011 3207 1469

M2 1,558,975 9638 3377

M3 1,867,879 5567 1999

N species, number of species identified in the sample 
including species identified by one or more reads; 
Singletons, number of species identified in the sample 
by only one read.

reads. The linear correlation coefficient between the two  
datasets is >0.99 in all the replicates. The plot is in log-log scale 
to emphasize differences in low abundance species. Only species 
with frequencies lower than 0.01% (i.e. species represented in 
1 read out of 10,000) show some effect of subsampling on the 
relative abundance estimation. All the seven samples share a  
similar behavior.

In Figure 6 we show the results obtained by reducing the 
number of sampled reads to 10,000 reads per sample. Similar to 
what we observed for larger subsamples, the linear correlation  
coefficient between species abundance estimate in the full and 
the reduced dataset was high in all the samples (r>0.95) and in 
all the replicated subsampling. The abundance of species with  
frequency greater than 1/1000 (0.1%) is correctly estimated in 
the subsamples, while for rare species the estimate is not precise.  
Species with frequencies <0.01% are by definition absent in the 
subsample obtained with 10,000 reads, and were arbitrarily 
set to a frequency of 0.001% to provide the reader with an idea  
on their abundance and distribution in the original sample.

Metagenome reconstruction
While characterizing and measuring species present in a complex 
matrix is an important task, some studies aim at reconstructing 
(partially or entirely) the metagenome via a de novo approach. 
We thus investigated the effect of coverage reduction on this task. 
We reconstructed de novo the metagenome of the full and reduced 
datasets, and compared the reconstructed genomes. Results are 
summarized in Figure 7. As expected, the size of the assembly 
is strongly influenced by the read number. Assemblies obtained  
using the full set of reads had a size ranging from slightly more  
than 1 Mb (sample B1) to nearly 100 Mb (F1 and F2). A decrease 
in the number of reads used for the assembly lead to a steady  
decrease in assembly size in all samples, although with different 
slopes. Assembly sizes obtained using 1,000,000 reads ranged 
from less than 1 Mb (F1 and F2) to slightly more than 10 Mb 
(M1), and those obtained using 100,000 reads ranged from less 
than 100 Kb (F1 and F2) to less than 1 Mb (all the remaining  
samples).

However, the total assembly length is not necessarily a sufficient 
measure to describe assembly goodness and completeness42,44. 
Since we are interested in assessing the completeness of the recon-
structed metagenome, we used BUSCO to report the proportion 
of genes covered by any given assembly42. Figure 8 reports the  
proportion of metagenome completeness estimated by BUSCO 
from full and from the reduced dataset obtained by randomly  
sampling 1,000,000 reads. The prokaryotic BUSCO dataset was 
used for all samples with the exception of sample M1, composed 
prevalently by a mushroom, for which the fungal BUSCO data-
base was used. The full samples F1 and F2 reconstructed a fairly  
complete proportion of the BUSCO genes (>90%), while the 
reduced dataset reconstructed less than 20%.

Similar trends can be observed with other datasets. Given the 
lower number of reads sequenced in other samples, the per-
formance in reconstructing the BUSCO genes was generally 
poor, but reducing to 1 million reads led to a further decrease in  
performance, suggesting that this is a clearly suboptimal number 
of reads. Samples B1 and B2 show a very poor performance 

(sample M2) to more than 12 million (sample F1). Our sub-
sampling, ranging from 10,000 to 1,000,000 reads, led to a 
reduction in size of 36% (1,000,000 out of 1,558,975) in M2 to  
0.08% of the original size (10,000 reads out of 12,472,553) in F1.

Samples used in this study had different levels of species com-
position (Figure 2). Some samples, such as M1, B1 and B2  
were dominated by a single species, while others, in particular  
fecal samples, showed high heterogeneity in species composition.

Diversity and species richness
Figure 3 shows the variation of the value of Chao1 estimator, 
representing the estimated number of species in each sample 
when varying the number of reads used for the estimation, from 
the smallest number on the left, to the full dataset on the right. 
The value of Chao1 estimator for the full dataset is plotted on 
the right side of the plot, at the rightmost fecal samples F1 and  
F2 had an estimated number of species greater than 40,000, much 
higher than all the other samples, for which less than 20,000  
species were estimated (less than 10,000 B1, B2, M1 and M3).

The effect of downsampling on the estimated number of spe-
cies has different effects in different samples. For most samples, 
even a robust downsampling led to only a slight reduction in the 
estimated species richness. However, for samples F1 and F2, 
which were characterized by a high number of overall species 
and rare species, the downsampling led to a significant reduction  
in the estimated species richness.

Shannon’s diversity index is a widely used method to assess the 
biological diversity of ecological and microbiological communi-
ties. Figure 4 depicts the effect of subsampling on the Shannon’s 
diversity index. The effect of subsampling on Shannon’s 
diversity index is smaller than the effect on the estimated 
number of species. The variation in Shannon diversity index 
with subsampling is negligible for all samples, even reducing  
the number of reads from the full size to 100,000 or less.

Figure 5 shows the correlation in species abundance estima-
tion between the full dataset and a reduced dataset of 100,000 
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Figure 2. Graphical representation of the composition of the seven studied samples.
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Figure 3. Effect of decreasing the number of reads on Chao1 diversity estimate. X axis is in log scale, Y axis is in linear scale. Shaded 
areas represent the confidence limits of resampling experiments. “Full” represents the values obtained with the full set of reads (number of 
reads per sample listed in column 2 of Table 1).

Figure 4. Effect of decreasing the number of reads on Shannon diversity estimate. X axis is in log scale, Y axis is in linear scale. Shaded 
areas represent the confidence limits of resampling experiments. “Full” represents the values obtained with the full set of reads (number of 
reads per sample listed in column 2 of Table 1).

because the prokaryotic organisms in the sample are very rare  
contaminants. Being derived from fetal human cell cultures, 
a large portion of the metagenome is constituted by human 
sequences, but given the very small ability in reconstructing 
de novo a genome as large as the human one, the proportion of  
reconstructed BUSCO genes is very low (<5% both for prokaryotic 
and eukaryotic BUSCO genes).

Discussion
The aim of the present work was to assess the reliability of low-
depth shotgun metagenome sequencing for the characterization 
of complex matrices, as follows: 1) determining diversity and 
species richness in complex matrices; 2) estimating abundance  
of the species present in the complex matrix, and 3) reconstruct-
ing de novo the genome of the species present in the samples. 
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Figure 6. Scatterplot of species abundance estimated using the full dataset of reads and a dataset composed of 10,000 reads. Data for 
all the five replicates of the subsampling are plotted. Each point (colored by sample of origin) represents a given species. The position on the 
X axis represents the relative abundance of the species in the full dataset, and the position on the Y axis represents the relative abundance 
of the species in the samples obtained by randomly sampling 10,000 reads. Both axis are plotted in log scale to facilitate visualization of low 
abundance species.

Figure 5. Scatterplot of species abundance estimated using the full set of reads and a set composed of 100,000 reads. Data for all 
the five replicates of the subsampling are plotted. Each point (colored by sample of origin) represents a given species. The position on the  
X axis represents the relative abundance of the species in the full dataset, and the position on the Y axis represents the relative abundance 
of the species in the samples obtained by randomly sampling 100,000 reads. Both axis are plotted in log scale to facilitate visualization  
of low abundance species.
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We selected seven heterogeneous complex samples, sequenced 
at varying coverage (ranging 1 to 12 million reads). Shotgun 
metagenomics experiments—often aiming at reconstructing  
de novo the studied metagenome—have a tendency to generate  
a very high number of reads per sample10. Compared to such stud-
ies, all of our samples have relatively shallow coverage of the  
metagenome, and we tested if even lower coverage could still  
provide reliable answers to the three main questions listed above.

We used Chao1 as an indicator of species richness and  
Shannon’s diversity index as an estimator of species diversity, and 

we measured their variation when reducing the number of reads 
used for the experiment.

An important detail to be considered here is the fact that the 
two indices behave differently in the full and the reduced  
samples. We provide an explanation regarding the reasons of this  
difference.

Chao1 estimator is obtained as

                                
1 1

1
2

( –1)

2( 1)Chao Obs

f f
S S

f
= +

+

Figure 8. Completeness of the BUSCO genes in the full dataset (darker colors) and in the largest of the reduced datasets (lighter 
colors). Error bars are based on the five replicate experiments performed for each sample.

Figure 7. Total length of the de novo metagenome assembly in each sample as a function of the number of reads. X and Y axes are in 
log scale. Shaded areas represent the confidence limits of resampling experiments. “Full” represents the values obtained with the full set of 
reads (number of reads per sample listed in column 2 of Table 1).
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Where S
obs

 is the number of observed species in the sample, f
1
 

is the number of species observed once, and f
2
 is the number  

of species observed twice.

Shannon diversity index is estimated as

                                  
1

– ln ( )*

N

i i
i

H p p
=

= ∑

Where N is the total number of species and p
i
 is the frequency  

of the species i.

Thus, the Chao1 index is heavily affected by the number 
of rare species that are identified and not from the relative  
frequencies of the most abundant species, while the Shannon 
diversity index is affected more by variation in the frequencies of  
highly abundant species than by the disappearance of rare species.

Samples F1 and F2 are characterized by a very large number of 
observed species (29,661 and 25,608, respectively), while all 
the other samples have lower number of species, ranging from 
2508 in B1 to 9638 in M2. Chao1 captures this differences,  
showing that F1 and F2 have greater diversity estimates. The 
Shannon diversity index, on the contrary, relies not only on the  
number of observed species, but also on the frequency  
distribution, and for a given number of species reaches its  
maximum for equifrequent species. Therefore, samples that have 
a relatively high number of common species with comparable  
frequencies tend to have high Shannon’s diversity indices.

As an example the number of species with a frequency greater 
than 0.1% was 23 in sample F1 and was 55 in sample M2.  
Thus, in spite of a much lower number of species in M2  
compared to F1, the Shannon diversity is higher in M2 than in 
F1. Given the differences in behavior between the two indices 
in certain conditions, we decided to use both of them to have a 
more complete information on sample diversity when decreas-
ing coverage. Our results show that a substantial reduction of  
coverage can be safely achieved without compromising the  
ability of estimating species richness and abundance (Figure 3 and 
Figure 4), although the estimated number of species is moderately  
affected by coverage reduction.

We then set out to assess the changes in the estimated rela-
tive frequency of each individual species when reducing the 
number of sequenced reads. Accurate estimate of the relative 
abundance of each species is an important task when the aim is 
a) to detect species with a relative abundance above any given 
threshold, b) to differentiate two samples based on different  
abundance of any given species composition, or c) to cluster sam-
ples based on their species composition. Our results show that  
even reducing sequencing to 100,000 reads, species abundances  
as low as 0.01% can be reliably estimated.

The last questions to which we sought to answer is if a reduction 
in the sequencing coverage would have a deleterious effect on the 
ability of de novo assembling the metagenome. Our results show 
that downsampling had a strongly negative effect on the total 
length of the reconstructed metagenome and on the proportion  
of BUSCO genes reconstructed with the metagenome assembly.

BUSCO is widely used for assessing the completeness of genome 
and transcriptome assemblies for individual organisms, and 
has benchmark datasets for several lineages. It is possible that 
using BUSCO for assessing completeness of a metagenomics 
assembly, including both eukaryotic and prokaryotic organ-
isms, results in an underestimation of the completeness of the 
reconstruction. However, the aim of the present work is not the 
absolute estimation of the completeness of the metagenomics 
assembly, but rather the relative variation observed when using a  
subsample of reads. Our results indicate that even using 
1,000,000 reads is clearly suboptimal in terms of fully sampling  
the genes present in the complex matrices. This observation 
needs to be taken into account in the phase of experimental 
design. Our conclusions also affect research aimed at reconstruc-
tion of an interesting part of the meta-genome, such as genes 
involved in antibiotic resistance24. The decrease in performance  
observed in the reconstruction of BUSCO genes will be likely 
observed for the reconstruction of other gene categories. Research-
ers aiming at a de novo reconstruction of the metagenome 
(although partial) must keep in mind that several millions of reads  
are needed to attain reliable results.

In the present work we tested the feasibility of using metage-
nome shotgun shallow high-throughput sequencing to analyze 
complex samples for the presence of eukaryotes, prokaryotes 
and virus nucleic acids with the aim of monitoring, diagnosis,  
surveillance, quality control and traceability.

We show that, if the aim of the experiment is a taxonomical  
characterization of the sample or the identification and quan-
tification of species present in it, then a low-coverage WGS is a 
good choice. On the other hand, if one of the aims of the study 
relies on de novo assembly, then a higher number of reads is 
required. We do not provide here a suggestion on the number of 
reads that are needed when the aim is the (partial) reconstruction  
of the meta-genome, as it depends on several factors (number of 
species in the sample, their genome size, and their abundance, 
length of the sequencing reads, quality of the DNA) and this 
estimation needs to be performed for each experiment based on 
detailed understanding of the experiment aims and of sample  
characteristics.

Data availability
Raw reads are available at NCBI Sequence Read Archive. Sam-
ples F1 and F2 are available under accession number SRP163102: 
https://identifiers.org/insdc.sra/SRP163102; samples B1 and 
B2 are available under accession number SRP163096: https://
identifiers.org/insdc.sra/SRP163096; and samples M1, M2 and  
M3 are available under accession number SRP163007: https:// 
identifiers.org/insdc.sra/SRP163007.
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